Classification and Categorical Inputs with Treed Gaussian Process Models

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treed Gaussian Process Models for Classification

Recognizing the successes of treed Gaussian process (TGP) models as an interpretable and thrifty model for nonstationary regression, we seek to extend the model to classification. By combining Bayesian CART and the latent variable approach to classification via Gaussian processes (GPs), we develop a Bayesian model averaging scheme to traverse the full space of classification TGPs (CTGPs). We il...

متن کامل

Bayesian treed Gaussian process models

This paper explores nonparametric and semiparametric nonstationary modeling methodologies that couple stationary Gaussian processes and (limiting) linear models with treed partitioning. Partitioning is a simple but effective method for dealing with nonstationarity. Mixing between full Gaussian processes and simple linear models can yield a more parsimonious spatial model while significantly red...

متن کامل

Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models

This document describes the new features in version 2.x of the tgp package for R, implementing treed Gaussian process (GP) models. The topics covered include methods for dealing with categorical inputs and excluding inputs from the tree or GP part of the model; fully Bayesian sensitivity analysis for inputs/covariates; sequential optimization of black-box functions; and a new Monte Carlo method...

متن کامل

Pattern Search Optimization with a Treed Gaussian Process Oracle

This work combines pattern search optimization with a statistical emulator based on Treed Gaussian Processes (TGP) to create a new hybrid algorithm. The goal is to use the global probabilistic view provided by TGP to inform the local pattern search and form a more intelligent optimization algorithm. We also propose ways in which the emulator can be used to gain information about the objective f...

متن کامل

Bayesian Nonstationary Gaussian Process Models for Large Datasets via Treed Process Convolutions

Spatial modeling often relies upon stationary Gaussian processes (GPs), but the assumption that the correlation structure is independent of the spatial location is invalid in many applications. Various nonstationary GP models have been developed to solve this problem, however, many of them become impractical when the sample size is large. To tackle this problem, we develop a process convolution...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Classification

سال: 2011

ISSN: 0176-4268,1432-1343

DOI: 10.1007/s00357-011-9083-y